1. Home
  2. OnLogic Systems
  3. Rugged Line
  4. Karbon Series
  5. Karbon K410 and K430 Technical Resources

Karbon K410 and K430 Technical Resources

Drivers and Manuals

User Manual

BIOS Manual (draft)

Drivers (Windows 10) (manual install via Device Manager)

Hardware Control Application

BIOS Update (A063)

Frequently Asked Questions (FAQ)

What operating systems are supported?

Windows 10 IoT Enterprise is the only supported OS at this time. Windows 10 Pro will install but is not supported. Ubuntu support is coming in Q1 2022

How do I install the wall mount or DIN mount

Refer to page 21 in the user manual for mounting diagrams

How much power does this system draw?

The system draws approximately 35 watts at full load. We recommend a 60 watt or higher power supply. Refer to page 28 of the user manual for further power consumption details.

How do I install drivers?

Download the drivers using the link above and then follow this guide to install them.

Which way should I insert a SIM card?

Note: The secondary SIM slot on the K430 is not compatible with OnLogic modems. It is for future expansion. The primary SIM slot can be mapped to either the mPCIe or m.2 slots via a BIOS setting.

Enabling Auto Power on

The system can be configured to turn on automatically when DC power is connected. This is useful for power outage recovery or if the unit is mounted in a hard to reach location. You can enable Auto Power On by following the steps listed below.

  • Power on the system and immediately press the Del key a few times until you see the “Front Page” menu
  • Arrow down and choose “Setup Utility” by pressing enter
  • Under the advanced tab, open the “RC Advanced Menu”
  • Open the “PCH-IO Configuration” menu
  • The auto power on setting is called “State After G3”.
  • Set it to S0 State to enable auto power on
  • Set it to S5 State to disable auto power on
  • Press F10 to save and exit. Then you are all set.

Clearing the CMOS

If the system fails to power on or output video, clearing the CMOS can often help. To clear the CMOS, the system needs to be opened and an internal switch needs to be pressed.

Opening the system does not void the warranty, however, some precautions are necessary to avoid damaging the unit. Any damaged caused will not be covered by warranty.

  • Perform this disassembly in an area free of static discharge
  • Before beginning, touch a grounded metal surface to discharge your body of static electricity
  • Power off and unplug the system. Disconnect all ports.
  • Remove the 4 Torx T8 screws from the bottom of the chassis
  • Use a small flathead screwdriver to pry the bottom plate off using the notch.
  • Locate the golden clear CMOS button
  • Hold down the clear button for 30 seconds.
  • Re-assemble the system. Do not over tighten the screws.
  • Re-connect the system and power it on.
  • Do not touch it for 2 minutes. Wait and see if it outputs video.
  • If not, contact OnLogic tech support for an RMA using the button on the right sidebar. >

Disassembly Guide

Opening the system does not void the warranty, however, some precautions are necessary to avoid damaging the unit. Any damaged caused will not be covered by warranty.

  • Perform this disassembly in an area free of static discharge
  • Before beginning, touch a grounded metal surface to discharge your body of static electricity
  • Remove the 4 Torx T8 screws from the bottom of the chassis
  • Use a small flathead screwdriver to pry the bottom plate off using the notch.
  • If the unit has the K430 expansion module, remove the 4 screws from the midplate and lift it straight out.
  • The internals of the system are now accessible.

Automotive Ignition Timings

Feature Overview

The ignition sense feature can be used to turn the Karbon unit on and off with a vehicle’s ignition. It can also be used in non-automotive applications using a switch instead.

An example configuration is shown below. The switch connects positive DC power to the IGN pin. The unit will turn on when power is applied to the IGN pin, and turn off when power is removed. These events have configurable delays.

Enabling and controlling ignition sense

  • Download the control application from the link above
  • Run Command Prompt as administrator
  • Navigate to the directory where you put the control application.
  • In this example, it is on the desktop.
  • Execute the following commands in order:

hwc ign set ignition-sense -v 1
hwc ign set low-power-mode -v 1
hwc ign set shutdown-timer -v 10
hwc ign set startup-timer -v 10
hwc ign set hard-off-timer -v 3000

  • Power down the system and you can turn it back on by connecting positive power to the IGN pin. This will give you a basic ignition timings setup with 10 second delays. Reference the table below for customizations.

Possible Options

hwc ign set command -v value

CommandDescriptionPossible Values
ignition-senseEnables or disables ignition sense 0=off, 1=on
low-power-modeReduces idle power consumption (recommended on when ignition sense is used)0=off, 1=on
startup-timerThe delay between IGN power being applied and the unit turning on0-999 (seconds)
shutdown-timerThe delay before Windows is shut down when IGN power is cut0-999 (seconds)
hard-off-timerAfter the shutdown timer has completed, power will be fully cut after X number of seconds. This is useful in case the system freezes at shutdown.0-999 (seconds)
low-voltage-timerThe low voltage shutdown can be delayed by X number of seconds. A value of at least 10 is recommended to avoid voltage drop related shutdowns – i.e. when the engine is started.0-999 (seconds)
shutdown-voltageThe unit can shut itself down when a certain low voltage threshold is reached. This helps prevent over discharging a battery.0-48 (volts)

Digital IO and CAN

The Karbon 410 and 430 series systems offer optional CAN bus and (optionally) isolated Digital IO support. This functionality is through the processor’s supporting ARM microcontroller, known as the Programmable Services Engine (PSE).

The PSE is isolated from the core processor, runs its own OS (Zephyr RTOS), but can be sent messages over the system’s Host Embedded Controller Interface (or HECI). The OS is transparent to the user. This interface may be used to send and receive CAN messages alongside setting and reading the Digital IO. 

Additionally, a stand-alone microcontroller can be used to manage the automotive features and low power states of the system.

Quickstart

Requirements: A K410 or K430 with Windows and the latest HECI driver. The HECI Windows driver is provided and supported by Intel, and will be preinstalled on K410 units purchased with Windows. If Windows is installed by the user, the driver is included with our driver package linked at the top of this page.

Note: We recommend you update to the latest BIOS version for the best compatibility with this application.

  1. Download the K410’s hardware control command line application.
  2. Open a command window, and navigate to the location of the downloaded file.
    1. Press the Windows Key + R
    2. Type cmd.exe and hit Enter
    3. In the window that opens navigate to the download location:
      1. e.g.  cd C:\User\Username\Downloads
  3. Run some example commands:
    1. hwc.exe --help to show commands and usage.
    2. hwc.exe can send 123 11223344 to send a CAN message.
    3. hwc.exe dio write 0 true to set the state of output zero as high.
    4. hwc.exe ign set low-power-mode -v 1 to enable entering low power mode on system shutdown

Application Integration

While in many cases it is sufficient to make calls to the K410’s command line utility, OnLogic is working on example code for C++ and Rust demonstrating how to send and read messages from the HECI driver. This section will be updated when the code has been released.

The HECI interface uses packed structures to send data between the host and PSE. Specific type structures are provided in the sample code, but an outline of the message format is available below:

BitsDescription
0 – 7HECI Command Identifier:
0x01: System Information:
0x02: Digital IO
0x04: Can Bus
8Set as ‘1’ if this message is a response from the PSE
9Set as ‘1’ if this message contains a valid data body
10 – 25Packed ‘argument’ for a given command. Format depends on the command identifier. 
26 – 31Status of last command
32 – 39Data format of body:
0: Raw data
1: Version information
2: CAN message
4: DIO message
7: ASCII String
40 – 168Body of message data, usually in the form of another packed structure.
Updated on November 29, 2021

Was this article helpful?

Related Articles

Need Additional Support?
Can’t find the answer you’re looking for? Don’t worry, we’re here to help!
Contact Support