Industrial Computer Power Supply – Don’t Be Shocked!

By ·Categories: Tech Explained·Published On: April 3rd, 2018·3.9 min read·

Today’s manufacturing facilities contain a blend of old and new technologies. Advanced sensors, lasers, motion control tables, and machine vision systems are used in conjunction with the workhorses of the industry – solenoids, coils, relays, and primary logic controllers (PLCs). While this modern technology can improve workflow efficiencies, it also brings new challenges to the table.

Mixing the old with the new requires careful consideration, especially when industrial PCs are part of the installation. Industrial computers rely on power supplies, but their power needs vary. Some demand clean power that’s well-regulated and free of noise and transients. Meanwhile, other devices actually produce power pollution, such as RF and transient voltage noise and spikes during use.

While this sounds complicated, knowledge of a few general concepts and industry best-practices will keep your machines running predictably and trouble-free for years to come. OnLogic aims to help users recognize problematic situations and identify how to mitigate them.

What Are The Key Industrial Computer Power Supply Challenges?

Engineers always aim to simplify wiring and containing costs. The industrial computer power supplies providing electricity to industrial PCs are often asked to do more than they are designed to handle. In many instances, a single power supply is being used to power computers on top of the electromechanical devices they control or monitor. These could be solenoids to motors.

While the industry best-practice encourages isolation between all sensitive electronics (i.e. computers) and noisy electromechanicals through the use of separate power supplies, the reality is that systems (and their power supplies) are underperforming, being damaged, or end up smoldering as a result of neglecting this standard.

Without this separation, PCs are at high risk due to the unnoticed (but prevalent) back-EMF voltages. These voltages are generated by inductive coils and solenoids within electromechanical devices. To complicate things even further, these events are too fast for people to notice and measure with regular metering equipment. An expensive oscilloscope is actually required to witness the wrath of coil discharge.

Electromechanical switches and solenoids use electric coils to move a piece of metal to open and close a valve or switch with a magnetic field. When an energized coil is de-energized, this magnetic field collapses and releases a transient voltage spike in the opposite direction as it happens. This is called “back-EMF” or “flyback”. It’s important to note that even if the input voltage is considered low, these low voltages can generate hundreds, even thousands of volts momentarily upon collapse. How does that work?

Diagram showing proper power isolationDiagram showing improper power isolation

We’ve established that when a coil is powered, the energy runs through the coil and creates a magnetic field. But for every loop that energy must pass through in the coil, the potential collapse voltages that will be created as a result are multiplicative. A coil with 24v input can easily produce transients in excess of 300 volts or more in the millisecond or microsecond time span when depowered. Larger coils can produce significantly more. That’s a lot of bite for a little bark. They are more than capable of destroying silicon junctions if not properly suppressed.

Today’s computers are designed to handle Electrical Fast Transients (EFT) in order to pass immunity standards, such as EN 55024. But these voltage inputs are typically 500 or 1,000 volts for short bursts. Prolonged or continued exposure to these bursts can degrade the dielectric performance of power components. They can result in damage to the power supply and other components.

Are You At Risk? What To Watch Out For And What To Do About It.

Does your application have motors, air valves, solenoids, or relays? If so, then your application may be at risk. If these devices are sharing a power supply with a sensitive electronic device, like a computer. Additionally, your power supply should be rated for use with IT equipment. If not, it could also be putting your system at risk.

Instead of taking a chance, adopt the industry best-practice and isolate your power supplies. Specifically, one for electronically ‘quiet’ devices like computers and one for ‘noisy’ devices like your electromechanical equipment. If your system uses electromechanical switches or solenoids, don’t skimp on quality! Make sure they have fly-back diodes or other line filtering technologies. These technologies internally snub out back-EMF before it pollutes your systems downstream. Lastly, ensure your computers and power supplies are IT rated and have records of immunity testing, such as EN 55024. You can learn more about device immunity by reading our article, “How We Stop The 5 Biggest Threats To Computer Hardware.”

Get the Latest Tech Updates

Subscribe to our newsletters to get updates from OnLogic delivered straight to your inbox. News and insights from our team of experts are just a click away. Hit the button to head to our subscription page.

Share

About the Author: OnLogic

OnLogic is a global industrial computer manufacturer that designs highly-configurable, solution-focused computers engineered for reliability for the IoT edge.